Relations Between Two Common Types of Rectangular Tilings

نویسنده

  • Yusu Wang
چکیده

Partitioning a multi-dimensional data set (array) into rectangular regions subject to some constraints (error measures) is an important problem arising from applications in parallel computing, databases, VLSI design, and so on. In this paper, we consider two most common types of partitioning used in practice: the Arbitrary partitioning and (p × p) partitioning, and study their relationships under three widely used error metrics: Max-Sum, Sum-SVar, and Sum-SLift.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monomer-Dimer Tatami Tilings of Rectangular Regions

In this paper we consider tilings of rectangular regions with two types of tiles, 1× 2 tiles (dimers) and 1× 1 tiles (monomers). The tiles must cover the region and satisfy the constraint that no four corners of the tiles meet; such tilings are called tatami tilings. We provide a structural characterization and use it to prove that the tiling is completely determined by the tiles that are on it...

متن کامل

On Tilings of Quadrants and Rectangles and Rectangular Pattern

The problem of tiling rectangles by polyominoes generated large interest. A related one is the problem of tiling parallelograms by twisted polyominoes. Both problems are related with tilings of (skewed) quadrants by polyominoes. Indeed, if all tilings of a (skewed) quadrant by a tile set can be reduced to a tiling by congruent rectangles (parallelograms), this provides information about tilings...

متن کامل

The Kernel of the Adjacency Matrix of a Rectangular Mesh

Given an m×n rectangular mesh, its adjacency matrix A, having only integer entries, may be interpreted as a map between vector spaces over an arbitrary field K. We describe the kernel of A: it is a direct sum of two natural subspaces whose dimensions are equal to ⌈c/2⌉ and ⌊c/2⌋, where c = gcd(m + 1, n + 1) − 1. We show that there are bases to both vector spaces, with entries equal to 0, 1 and ...

متن کامل

Counting Colorful Tilings of Rectangular Arrays

In this paper we give recursive formulas for the number of colorful tilings of small rectangular arrays. We enumerate the tilings of a 2 × n board with painted squares, dominoes, and I-trominoes. We also provide a recursion formula for the number of tilings of a 3 × n board with colorful squares and dominoes. Finally, we describe a general method for calculating the number of colorful tilings o...

متن کامل

Tilings of rectangles with T-tetrominoes

We prove that any two tilings of a rectangular region by T-tetrominoes are connected by moves involving only 2 and 4 tiles. We also show that the number of such tilings is an evaluation of the Tutte polynomial. The results are extended to a more general class of regions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Comput. Geometry Appl.

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2006